Upper tropospheric water vapour and its interaction with cirrus clouds as seen from IAGOS long-term routine in situ observations.
نویسندگان
چکیده
IAGOS (In-service Aircraft for a Global Observing System) performs long-term routine in situ observations of atmospheric chemical composition (O3, CO, NOx, NOy, CO2, CH4), water vapour, aerosols, clouds, and temperature on a global scale by operating compact instruments on board of passenger aircraft. The unique characteristics of the IAGOS data set originate from the global scale sampling on air traffic routes with similar instrumentation such that the observations are truly comparable and well suited for atmospheric research on a statistical basis. Here, we present the analysis of 15 months of simultaneous observations of relative humidity with respect to ice (RHice) and ice crystal number concentration in cirrus (Nice) from July 2014 to October 2015. The joint data set of 360 hours of RHice-Nice observations in the global upper troposphere and tropopause region is analysed with respect to the in-cloud distribution of RHice and related cirrus properties. The majority of the observed cirrus is thin with Nice < 0.1 cm-3. The respective fractions of all cloud observations range from 90% over the mid-latitude North Atlantic Ocean and the Eurasian Continent to 67% over the subtropical and tropical Pacific Ocean. The in-cloud RHice distributions do not depend on the geographical region of sampling. Types of cirrus origin (in situ origin, liquid origin) are inferred for different Nice regimes and geographical regions. Most importantly, we found that in-cloud RHice shows a strong correlation to Nice with slightly supersaturated dynamic equilibrium RHice associated with higher Nice values in stronger updrafts.
منابع مشابه
An Intercomparison of Microphysical Retrieval Algorithms for Upper- Tropospheric Ice Clouds
U pper-tropospheric ice clouds are important modulators of the Earth’s climate, cover 20% of the globe at any given time (Liou 1986), and occur ~43% of the time in long-term satellite datasets (Wylie and Menzel 1999). Ice clouds, such as cirrus, tend to ref lect less incoming solar radiation and absorb more infrared radiation than water clouds, which are typically optically thicker and occur at...
متن کاملLIDAR Developments at Clermont-Ferrand—France for Atmospheric Observation
We present a Rayleigh-Mie-Raman LIDAR system in operation at Clermont-Ferrand (France) since 2008. The system provides continuous vertical tropospheric profiles of aerosols, cirrus optical properties and water vapour mixing ratio. Located in proximity to the high altitude Puy de Dôme station, labelled as the GAW global station PUY since August 2014, it is a useful tool to describe the boundary ...
متن کاملPotential of airborne lidar measurements for cirrus cloud studies
Aerosol and water vapour measurements were performed with the lidar system WALES of Deutsches Zentrum für Luftund Raumfahrt (DLR) in October and November 2010 during the first mission with the new German research aircraft G55-HALO. Curtains composed of lidar profiles beneath the aircraft show the vertical and horizontal distribution and variability of water vapour mixing ratio and backscatter r...
متن کاملEvidence of nitric acid uptake in warm cirrus anvil clouds during the NASA TC4 campaign
[1] Uptake of HNO3 onto cirrus ice may play an important role in tropospheric NOx cycling. Discrepancies between modeled and in situ measurements of gas‐phase HNO3 in the troposphere suggest that redistribution and removal mechanisms by cirrus ice have been poorly constrained. Limited in situ measurements have provided somewhat differing results and are not fully compatible with theory develope...
متن کاملCirrus, contrails, and ice supersaturated regions in high pressure systems at northern mid latitudes
During the European heat wave summer 2003 with predominant high pressure conditions we performed a detailed study of upper tropospheric humidity and ice particles which yielded striking results concerning the occurrence of ice supersaturated regions (ISSR), cirrus, and contrails. Our study is based on lidar observations and meteorological data obtained at Lindenberg/Germany (52.2 N, 14.1 E) as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 200 شماره
صفحات -
تاریخ انتشار 2017